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The Stokes flow due to  the motion of a small particle in arbitrary directions is 
investigated in the presence of a circular hole in an infinite thin plane wall separating 
a quiescent viscous fluid. 

The solutions of the boundary-value problem are obtained in closed forms to the 
point-force approximation in toroidal coordinates, by the use of the Green and 
Neumann functions supplemented by the edge function to remove the singularity a t  
the rim of the hole. The volume flux through the hole and the force and torque 
experienced by the small spherical particle are determined on the basis of this 
solution. The case of linear motion parallel to the plane of the wall is discussed in 
detail. 

1. Introduction 
The motion of a small particle near an orifice is an interesting problem with various 

biological and engineering applications. Recently, the axisymmetric motion near a 
circular hole in a thin plane wall has been studied on the basis of the point force 
(Stokeslet) approximation (Hasimoto 1979, 1981 ; Davis, 0 'Neil1 & Brenner 1981). 
Dagan, Weinbaum & Pfeffer (1982) presented the general theory for the motion of 
a sphere of arbitrary size by the use of two series solutions in two semi-infinite 
domains and the collocation technique. 

The non-axisymmetric solution for the Stokeslet perpendicular to the plane wall 
has been presented by Miyazaki & Hasimoto (1982) in terms of the Green function, 
yielding a singularity on the rim of the hole, which can be removed by the 
complementary infinite-series solution. 

Recently, a closed-form solution for arbitrary direction of the Stokeslet has been 
given by Hasimoto, Kim & Miyazaki (1983) in the case of a semi-infinite plate, 
yielding the approximation for the Stokeslet in the vicinity of a circular hole, where 
the convergence of the infinite series is slow. 

I n  this paper the solution for the circular hole will be given in closed form for a 
Stokeslet of arbitrary position and direction. 

Fundamental equations and the outline of the method of solution will be presented 
in $52 and 3. The solution is given in terms of the Green and Neumann functions 
supplemented by the edge function to remove the singularity on the rim of the hole. 
Toroidal coordinates are adopted. 

I n  $4 these solutions are applied to the case of a small sphere translating in a 
quiescent fluid. I n  $4.1 the volume flux through the hole is given by contours referred 
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FIGURE 1.  Geometry of the problem. 

to the position of the sphere. In  $4.2 the drag, sideforce and torque on the particle 
are given to first order in the wall effect. They are given in terms of tensor coefficients, 
whose values are presented as contours referring to the position of the particle. As 
an example, the case of the translation along a line parallel to the wall is studied in 
detail. 

2. Fundamental equations 
Let us consider a viscous fluid separated by the plane z = 0 with a circular hole 

of radius unity, whose centre is a t  the origin of the cylindrical coordinate system 
(p,O,z). Figure 1 shows the geometry of the problem. We also make use of the 
Cartesian coordinates (2, y, z )  with unit vectors 2,p and 2 parallel to each axis, and 
with 

x = pcos8, y = psin8. 

A small particle a t  x,, = (x,,, 0, z,,) translating in an arbitrary direction induces a flow 
in the fluid, which is at rest a t  infinity. 

On the assumption that the particle is small and that its motion is slow, we have 
the following equations of motion (2.3) and of continuity (2.4), i.e. we adopt the Stokes 
equation of motion: 

where p is the pressure, v = (u, v, w) the velocity, ,u the viscosity coefficient and 
V2 = a2/ax2 + a2/ay2 + a2/i3z2 denotes the Laplacian operator. 

The boundary conditions on the rigid wall are given by 

gradp = ,uV2v, div v = 0, (2.3), (2.4) 

v = 0 on z =  0, p > 1 and u+O as (x(+oo. (2.5),(2.6) 

Assuming that the particle size is far smaller than the distance from the wall, we 
place a t  the particle position Stokeslet singularities, which play the role of driving 
forces with a unit strength. 

Owing to the linearity of the problem we have only to study the three cases where 
the direction of the Stokeslet is parallel to each coordinate axis (denoted by 
x, (j = 1,2,3) for x, y, z respectively) : 

(2.7) 
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where 

R = 1 ~ - ~ , 1 ,  
is the distance from x, and 0, denotes the operator 

O,[$l = x, grad $ -$2,, (2.10) 

yielding the Stokes velocity from the harmonic function satisfying 

VZ$ = 0. (2.11) 

The outline of the method of solution and the exact solution for each case by this 
method will be presented in the following sections. 

3. Outline of the method of solution 

$, (i = 1 ,2 ,3 ,4 )  as follows (see e.g. Hasimoto & Sano 1980): 

8npv = Z O,[$,] +grad $4 

The general solution of the Stokes equation is given by four harmonic functions 

(3.1), (3.2) 
a 4  3 

and 4np = Z -. 
(-1 ,=1 ax, 

These functions should be determined from the boundary conditions (2.5)-(2.8). 
In  our problem it is rather convenient and simple to introduce the Green and the 

Neumann functions G and H to satisfy the boundary conditions, and to remove the 
edge singularity at the rim of the hole p = 1,  z = 0 by introducing the complementary 
singular solutions later on. 

Let us introduce the toroidal coordinates (t, 6 , ~ )  related to (p, 0,  z )  by 

and 

(3.3) 

(3.4) 

where the wall is given by 7 = 0 and 2n, and E = co corresponds to the rim of the 
hole. Then G and H are given by (Wendt 1958), 

G=+(W-W*)  and H=; t . (W+W*) ,  (3.5), (3.6) 
where 

(3.7) 

, (3.8) 

(3.9) 

[2 ch w - 2 cos (7 - 70)]1 

MOM 
R =  

M = W E ,  7) = (chE--os7)4 M, = M(&,, 7 0 ) ,  

chw = ch E ch 6,- sh [sh 6, cos 6,  (3.10) 

and the quantities with the asterisk * are obtained by replacing v0 by -70 in 
corresponding quantities. According to the definitions of G and H ,  

(3.11) 
1 1 

Q = G - -  and a = H - -  
R R 
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are regular harmonic functions in the flow field, 
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v28 = 0, vzw = 0, (3.12) 

and satisfy the boundary conditions 

R' az 
I 1 aA 

az a (7 R ' 
G = - -  -=-- - 

i.e. 

= 0 at z = 0, p > 1 (i.e. q = 0,2x).  (3.13) 

Letting ,$+ co in (3.5)-(3.10), the behaviour of G and B at the edge of the hole is 

aH 
G = O ,  - 

a2 

found to be 
28 

s inhos inh  - COS%, C O S ~  x 
= - M, @(O) e-45 (1 + O(e-5)) 

= --@(8) 2MO (1 +O(ed)), (3.14) 

B - G 

7CM 
where 

@(O) = (ch,$,-sh~,cco~O)-~~. (3.15) 

If we replace l /R by G in (2.7) and (2.8) and add a particular solution 0,[4,] in 

(3.16) 

terms of a harmonic function q5,, we have 

87~pdi) = Oi[G] - xj0 grad G +  03[q5i] 
and 

(3.17) 

If we notice that on the plate z = 0, p > 1 

(3.181, (3.19) 
aG 

O,[Cl= x j x z  and 03[$] = -q52 

from their definitions (2.10) and (3.13), then the remaining condition is 

(3.20) 
aG 

q5j = (xi - xio) % on the plate. 

Making use of the fact that 
G - H  = 8 - B  = - W* (3.21) 

is regular harmonic in the flow field, and xia$/az-zaq5/ax, is harmonic if q5 is 
harmonic, is easily found to be 

a ( G - H )  B(G-H) 
- z  4j = (xj-xjol az axi 

(3.22) 

Unfortunately (3.16) and (3.17) with (3.22) render the velocity (p,  z-component) 
infinite and the pressure non-integrable at  the edge ,$+ m (see (3.14)). The singularities 
on the right-hand-side of (3.16) are found to be (for j  = 1, 2 and 3):  

q'cl)  & . -x,q'+Req'*, q'(Z) I Imq'* q ' ( 3 )  + - zed, (3.23) 
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where = denotes that the terms O(e-46) are neglected, and Re and Im denote the real 
and imaginary parts respectively. Here 

(3.24) 
+ g r a d [ Z G ] - O , [ Z ~  a + C,qb*-Cc,q;;E, 

aZ 
with 

2 2 
C --Mosinho, C - - M o c o s h o ,  

Z = eie, 

G - ? I  H - ? I  

and 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

In these derivations we have made use of (3.14) and the relations 

and we have made use of the relation 

3 grad [$@I = 0,[@cos6M,1+0z[@sin6Ms1-03[@M~l-grad [@M,J 

= Op[@MsI-O,[@McI-grad [@MsI, (3.32) 

which can be proved by taking components in cylindrical coordinates and noting 
(3.29) and the relations 

as well as 

(3.33) 

(3.34) 

For qh* we have only to replace @ by @Z in the corresponding equations. Our 
remaining task is to find the Stokes velocities q and q* vanishing on the plate as 
analytic continuation of q' and q'* and subtract them from (3.16). 
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For this purpose we notice that the harmonic function with eM in toroidal co- 
ordinates can be expressed as (Bateman 1932) 

@ =  Msq5 or M&, (3.35) 
where 

9 = f(7Z) + g ( 7 . a  (3.36) 
with 

r = t h i t ,  Z= exp(-iB). (3.37) 

The application to q;1 and q;Ih is simple. We have only to represent + and @Z as 

where 

with 

Then we have 

where 

with 

and 

+ = r0$J+1, @* = @Z = $*+r0, (3.38), (3.39) 

J = Zf(Z)+Zf(Z) and J* = Zj (Z )+r ; z f ( z )  (3.40), (3.41) 

(3.42) 
1 

f(Z) = 1-7,z' 

qH = io3[Ms q, qg = i0,LMs y*l ,  (3.43) 

Y = r0P+1, Y* = !P*+70 (3.44) 

9 = 7Zf(7Z) + C.C. (3.45) 

!P* = 7Zf(7Z) + r; rZj(r2). (3.46) 

It is easily found that qH and 4% are Stokes velocities vanishing on the wall and 
yielding the same singularities as qh and q;Ih as 7+ 1 ,  i.e. C+ co. 

However, the situations for 4;: and 4 2  are not simple. If we look for four harmonic 
functions corresponding to (3.1) and (3.35)-(3.37) in accordance with (3.30), we have 
for the Stokes velocity 

4 = 0 1 [ ~ s 9 1 1 + 0 2 ~ ~ s 9 2 1  +OJJf,9,1+grad [Ms941 

= O,[M,9,1 + 240 a+ O,[M,9,1 +grad [Ms 941, (3.47) 

with 

9j = fj(W +9j(7Z) (3.48) 

and 

q4, = cosBq5,+sinBq5,, q50 = sinB$,-cosBq5,. (3.49) 

If we take into account that 

(3.50) 

on the wall (7 = 0,2x) ,  the condition of vanishing Q on the wall is given by 

1 9, = (;-7)93-794 (3.51) 
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f, = ( ~ - 7 2 )  f3-7zf4, f2 = i -+7z f3+iTzf4. (3.52) 

The assumption of #4 = -iY and $, = +Y with (3.44) in accordance with (3.30) and 
(3.47) seems to be satisfactory, yielding q G [ $ ]  as 7+ 1 .  Unfortunately, it is singular 
a t  7 = 0, i.e. on the z-axis, because of the presence of the constant term 1 in (3.44). 
This difficulty can be easily avoided if we make use of 70p instead of Y and 
complement the axisymmetric part by 

207 

or 
1 

(7; 1 

(3.53) 

where 

corresponding t o p  = 1 ,  i.e. the complementary function (multiplied by2-:) introduced 
by Hasimoto (1981) to remove the corresponding singularity in the axisymmetric 
case. Here h and [ are ellipsoidal coordinates 

z = h [ ,  p =  ( l - -P) : ( l+p) i  

related to 6 and by 
(3.55) 

(3.56) 

(3.57) 

(3.58) 

We now have only to add to (3.16) the correction velocities q(j) corresponding to (3.23) 
and (3.24), using (3.43), (3.57) and (3.58). 

Thus the final expression for u(3) satisfying all of the conditions is 

8npuu) = Oj[G]-xjo gradG+03[$j] +q( j ) ,  (3.59) 
where 

with 
q(1) = 5 oq-Req*, q(2)  = -Imq*, q(3) = zoq,  (3.60) 

4 = c G q G - c I f q H >  q* = C G q E - C H q g .  (3.61) 

By use of (3.1) and (3.2), the vorticities d) and the pressure corresponding to (3.61) 

(3.62) 
are given by 

and 

4n,uuo(*) = 2* x grad G + 2, x grad $ j  + v ( j )  
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(3.64) 

with 

(3.65) 
v = C G V G - C H V H ,  n = CGnG-CHnH,  

v* = C G v Z - c H v Z ,  =* = cGng-cHnTT;f; .  

where 
a 
ax 

V G  = 2.,xgrad-$,++7, 

1 1 +-xgrad[ipM,(~--~)[~Zf(~Z)-c.c.] a + R 3 x g r a d [ M c q  , 
P 

[7zf(~z) - 7; ~zf(&)] + 2, x grad [ N ,  p*]] 1 

I 

(3.66) 

In these expressions 

7 
= - [2( 1 + 7; )  cos 8-'r0( 1 + 7:) + 2i( 1 - 7 3  sin 61, 

H 

with 
H = 1-2T07 C 0 S 6 + 7 : 7 2 ,  

where we have made use of (3.40)-(3.42). 

(3.68) 

(3.69) 
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0.65 1.0 2 0  

FIGURE 2. Volume flux induced by the radial translation of the sphere; 
m contours in the (zo, z,)-plane. 

4. Translation of a small sphere 

When a small sphere of radius a translates with the velocity U = Zj-l U(j)i?,, a net 
volume flux Q through the hole is induced. To the lowest order of a we have 

4.1.  Volume flux through the hole 

Q =  -DoQt*U,  (4.1)  

where 
Do = 6npa, 

Equation (4.4) integrates to zero f o r j  = 2,  because of symmetry. The contours in 

&(I) takes the maximum value Q& = 3.8 x a t  (0.65, 0 .62) ,  vanishing on 

Q(3) takes the maximum value Qfi) = 1.6 x 10-1 at the origin. It decreases slowly 

Note that there is at any position in the (xo,  %,)-plane one direction along which the 
(0 .65,0.62) .  

the (x , ,  %,)-plane of Q(l) and Q(3) are shown in figures 2 and 3 respectively. 

both axes and at infinity. 

in the zo direction and rapidly in the xo direction. 

sphere translates giving no volume flux; e.g. -2.8” to the xo axis a t  
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4 2 x 10-2 7 x 10-2 
''1 6 - x 10-2 

5 I XO 
7 X lo-' = 1.59 X lo-' 

FIGURE 3. Volume flux induced by the axial translation of the sphere; 
as contours in the (x,,, zo)-plane. 

4.2. Drag, sideforce and torque 
We can evaluate the force m) and torque fl*) acting on the sphere translating parallel 
to each axis with the velocity t P g j  to the first order in the wall effect, by means 
of the generalized Faxen law (see e.g. Happel & Brenner 1965) : 

where 

wf) = curl q f )  = 2gj x grad (1/R) (4.7) 

and ( 
the subtraction of the fields qi*) and a:*) of the Stokeslet. 

) o  implies the induced field evaluated at the centre of the sphere x = xo with 

Evaluating the value at the position xo, we have 

and 
F = -6~pa[ /+aK+ O(a2)]. U 

T = -8npa2[a2C+0(a4)]- V, 

where I is the unit tensor and 



Motion of a small sphere near a hole in a plane wall 21 1 

with 

6- 6 cosy + 8 cos2y + cos3y 

i + 2( 1 - COST) (3  + COSY - 5 C O S ~ ~  - cos3y) 

2-cosy+cos2y 
1 +cosy 4 

sin2y ~- 
(ch t+  1 

- 
M2 

s h t  sin7 
167c M2 f =f = (1  - C O S T )  [ 4(,lzJ;y)- c h t  cosy - 9 c h t +  8 COST - 2 25 5 2  

18(' -')+ 6) - 12( 1 - ch 5 cosy) 

1 sin2 y 
M2 

+-(ch2t cosy+8M2 ~ h 6 + 2  cht-5 C O S ~ + ~ )  , 

M2 8(l  -cosy) I 
jYy =%[ ch6+1 9("-")+ sin? 8 + cosy] 

and 

c h t +  1 
c h t  cosy + 3 c h t  - 2 cos y + 2 - 1 

16n 
t,, = -- 

(4.10) 

1 
16n 

t,, = --sht (1 -COSY) [ ~ W + T ~  ( ~ h f ; + 2 )  (1  + cosy)]. 

Here we have omitted the suffixes 0 from to, yo and M ,  for the sake of brevity. 

is allowed to rotate (Sano & Hasimoto 1978): 
The tensor C is useful in predicting the angular velocity 0 of the sphere when it 

0 = -C*lu+O(a4) ,  (4.11) 

Let us begin with two special positions of the sphere (i) on the z-axis; and (ii) on 
the effect of rotation on the force being of higher order. 

the aperture. When the sphere is on the z-axis, i.e. 6, = 0, we have 

sin yo 
3 
87[: 

f,, = -(l-cosy,) (4.12) 

f,, = f,, = 0, c = 0. 
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- 9 I \ -  9 
16z0-! 1-82, 

3 - 
n 

3 
2n 
- 

i 1  
I I  

FIGURE 4. Variation off,, = fvy and f , ,  when the sphere is on the z-axis. 

The formula for f,, in (4.12) has already been given by Hasimoto (1979, 1981) and 
Davis et al. (1981). Figure 4 shows the variation off,, = f,, with respect to zo. Note 
that f,, has an extremum 0.69 at zo = 0.8702, in contrast with f,, = f,,, which 
decreases monotonically as zo increases. If we consider the symmetry, we are sure that 
f,. =fix, t ry ,  t,, and t,, + t,, must vanish on the axis. However, the vanishing of t,, 
to the lowest order of approximation is a little surprising. 

When the sphere is on the aperture, i.e. q0 = K, we have 

I 1 1 6 + x t  
f,, = -(7chfl0+5) = -- 

4x 2n 1 - x; ’ 

1 13-2; 
n 7 t l - X ; ’  

f,, = -(chE0+2) = -- 

3 3 1  
f,, = - (chco+l)  =-- 

4n 27t 1-x;’ 

1 1 x; 
t,, = -sh[o(ch[O-l) = - 

871 

27T (1 - x;,2 . 
3 
87t 

t,, =--sh~o(ch[o+l )  =--- 

(4.13) 

The variations of fix, f,, and f,, with respect to xo are shown in figure 5, and those 
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aperture. 

0 0.1 0.2 0.3 0.4. 0.5 0.6 0.7 0.8 0.9 x,, 

FIQURE 6. Variation oft,, and t,, when the sphere is in the aperture. 

o f t  
the limits satisfying the relation 

and t,, in figure 6. As the edge is approached, they increase monotonically to 
y. 

fi.:fy,:fzz= 7:4:3, tzy:tyz= 1:-3. (4.14) 

The same relation is found in the case of a semi-infinite plane (Hasimoto et al. 1983). 
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- 0.25 t----- 
I - 0.50 

- 

FIGURE 7. Contours off,., in the (zo, 2,)-plane. 

zo t 

- 0.25 

-0.50 

-0.75 

L 

3 0  

FIGURE 8. Contours of fgg in the (q,, 2,)-plane. 

In fact, taking the limit to-+ 00 in (4.9) and (4.10), we have the same expressions as 
in the case of a semi-infinite plane. On the other hand, at  the centre po = 0, we have 

(4.15) 

When the sphere is a t  any position in the (x,, z,)-plane the diagonal elements of 
K represent the drag correction, which is always positive. Contours of fxx, fyy and 
f,, are given in figure 7, 8 and 9 respectively. The anisotropy of K causes a sideforce 
when the sphere translates along a line that is skewed with respect to the coordinate 
axes. It is interesting to note that the extremum value off,, a t  xo = 0 for fixed zo 

f,,: fyy: f,, = 2:2:1,  tzy = ty, = 0. 
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I 

-0.75 

- 
----- 
\ 

: 
\ 

--c 
XO 

FIQURE 9. Contours of fzz in the (x,, 2,)-plane. 

.1.50 
1.75 

.:2.00 

.2.50 
'3.00 
'4.00 
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XO 

FIQURE 10. Contours off,, = fZz in the (xo, 2,)-plane. 

is not always a local minimum; i.e. maximum for zo > 1.08. This effect will be 
investigated in detail when the sphere moves on the plane of fixed height z,,. 

The off-diagonal parts also imply the presence of sideforce even in translation 
parallel to the z or radial axis. Contours off,, = f,, are shown in figure 10. When 
the sphere approaches the plane in a direction parallel to the z-axis, there is an inward 
sideforce. When the sphere moves in the radial direction outward, there is an upward 
sideforce. No sideforce appears when the sphere translates in the azimuthal direction, 
as is clear from symmetry considerations. 

As an example of the translation of the sphere experiencing composite forces, we 
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(a ) 
A 

0 

I 

0.005 
0.010 
0.015 
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0 
FIGURE 12. Contours of the sideforce (y-component) in the (xo, yo)-plane when the sphere translates 

parallel to the z-axis for fixed zo:  (a) zo = 0; ( b )  0.5; ( c )  1.0. 
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y o  I ,0.010 

0.050 

FIGURE 13. Contours of the sideforce (2-component) in the (z,,, yo)-plane when the sphere 
translates parallel to the z-axis for fixed zo ( = 1.0). 

consider motion parallel to  the x-axis for fixed z, and yo. Figure 1 1  shows the contour 
of drag correction ( -  F,/D, - l ) / a  for zo = 0, 0.5, 10 and 1.5 (figures 11 a, b, c ,  d ) .  

Note the topological differences between figures 1 1  ( c )  and ( d ) .  I n  figure 1 1  ( c )  the 
minimum value is attained at the origin (x, = yo = 0), but in figure 1 1  ( d )  the origin 
becomes the local saddle point, which has already been expected from examination 
of figure 7. This result seems to  be related to  the fact that  the maximum induced 
volume flux is attained a t  (0.65,0.62) in the (x,, z,)-plane; the reduction of drag 
correction by the induced flow being rather larger off-axis and off-plane. We note that 
these topological changes take place a t  zo = 0.88 and 1.08. The influence of the hole 
vanishes rapidly as yo  is increased. 

Figures 12 and 13 show the contours of sideforce F,/D,a and F,/D,a respectively. 
The sideforce F,/D,a is due to  the anisotropy of the tensor K. It shows a very 
interesting variation when the sphere moves along the line yo  = const. In  figure 12 ( b )  
F,/D,a changes its sign three times if lyol < 0.64, first (inward-toutward) when the 
sphere enters the semicircle of radius 0.64 from negattive xo, secondly (outward+in- 
ward) at xo = 0, and finally (inward+outward) at the opposite semicircle. Whereas 
for lyol >, 0.64 the change occurs only a t  xo = 0, similarly to the case of greater height 
lzol >, 0.74, where the change occurs only once for any value of yo (figure 1 2 ~ ) .  

The sideforce $ /Do  a is due to  the off-diagonal components of K. I ts  sign change 
takes place a t  xo = 0 (downward+upward). The influence of the hole is small, except 
for a small region near the hole. I n  particular F,/D, a decreases very rapidly, and the 
force correction to the sphere is nearly parallel to the plane when it moves far off-axis. 

Contours of the torque t,,, t,,, t,, and t,, in the (xo,zo)  (z, > 0) plane are given 
in figures 14, 15, 16 and 17 respectively. 

The values oft,, and t,, vanish on both axes to our order of approximation, as 
in the case of a rigid wall, where they are O(a4).  When the sphere moves in the radial 
off-axis direction, a positive azimuthal component of torque appears. When the 
sphere moves in the positive azimuthal direction, a negative radial component of 
torque occurs. These torques increase to  infinity as the edge is approached. The values 
oft,, and t,, vanish on the zo axis and on the rigid wall, as is to be expected from 
the symmetry of the problem. The torque of the positive azimuthal component 
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FIQURE 14. Contours oft,, in the (x,, 2,)-plane. 
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FIQURE 15. Contours of -$,, in the (x,, 2,)-plane. 
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FIQURE 16. Contours of - tvz in the (x,, z,)-plane. 
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FIQURE 17. Contours of tZy in the (x,, 2,)-plane. 
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8 .  Trajectories of a small sphere: (a) through a hole in a horizontal wall; 
(b) beside a vertical wall with a hole. 

the sphere moves in the positive z-direction. Torque around the 
negative z-axis occurs when the sphere moves in the positive azimuthal direction. 
They increase infinitely as we approach the edge of the hole, where the asymptotic 
form given in the case of the semi-infinite plane is attained. For zo < 0 we have only 
to notice that tzy and t,, are odd functions of zo and that t,, and t,, are even. 

As an application of our results, the trajectories of a small sphere (diameter 0.1) 
under the effect of constant gravity are calculated for two cases : 
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( a )  when the sphere is dropped through a hole in a horizontal wall; 
( b )  when the sphere is dropped besides a vertical wall with a hole. 
Figure 18(a) shows the trajectories for case (a) ,  where a gravitational force with 

negative z-component acts on the sphere. The initial positions of the sphere are 
(x,y,z)  = (0, 0, 1.5), (0.3,0,1.5), (0.6,0,1.5) and (0.9,0,1.5). The trajectories for case 
( b )  are given in figure 18(b), where gravity, parallel to the negative x-axis, is exerted 
on the sphere. The initial positions are (1.5,0,0.2), (1.5,0,0.4) and (1.5,0,1.4). All 
trajectories remain in the (x, 2)-plane, and the subsequent positions of the sphere are 
shown in the figures. When the sphere moves near the plane wall, its translational 
velocity decreases, because it suffers larger drag. The effect of the sideforce is 
remarkable in the vicinity of the edge. The arrow signs in the figures represent the 
rotation of the sphere. Note that the rotational velocity is so small that the effect 
on the force is negligible in our approximation. 

The authors would like to express their thanks to Dr A. M. J. Davis for making 
them aware of his study on the same subject (Davis 1983). In his paper, the mixed 
boundary-value problem is reduced to  a dual integral equation and the solution is 
given in the form of infinite series of integrals. 

This work is partially supported by a Grant-in-Aid for Scientific Research from 
the Ministry of Education. 
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